首页> 外文OA文献 >Real-time people and vehicle detection from UAV imagery
【2h】

Real-time people and vehicle detection from UAV imagery

机译:通过无人机图像实时进行人员和车辆检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A generic and robust approach for the real-time detection of people and vehiclesfrom an Unmanned Aerial Vehicle(UAV) is an important goal within the frameworkof fully autonomous UAV deployment for aerial reconnaissance andsurveillance.Here we present an approach for the automatic detection of vehicles based onusing multiple trainedcascaded Haar classifiers with secondary confirmation inthermal imagery. Additionally we present a related approachfor people detectionin thermal imagery based on a similar cascaded classification techniquecombining additionalmultivariate Gaussian shape matching. The results presentedshow the successful detection of vehicle and people undervarying conditions inboth isolated rural and cluttered urban environments with minimal false positivedetection.Performance of the detector is optimized to reduce the overall falsepositive rate by aiming at the detection of each objectof interest (vehicle/person) at least once in the environment (i.e. per search patter flight path)rather than every object ineach image frame. Currently the detection rate forpeople is ~70% and cars ~80% although the overall episodic objectdetection ratefor each flight pattern exceeds 90%.
机译:在无人机自动部署以进行空中侦察和监视的框架内,一种通用且鲁棒的从无人驾驶飞机(UAV)实时检测人员和车辆的方法是一个重要目标。使用多个经过训练的级联Haar分类器进行二次确认的热成像。另外,我们提出了一种基于热敏图像中人检测的相关方法,该方法基于类似的级联分类技术,结合了附加的多变量高斯形状匹配。提出的结果表明,在偏远乡村和杂乱无章的城市环境中,在各种条件下都能成功检测到车辆和人员,且误报率极低。通过针对每个感兴趣的物体(车辆/人)进行检测,优化了检测器的性能以降低总体假阳性率至少要在环境中一次(即每个搜索模式飞行路径),而不是每个图像帧中的每个对象。目前,尽管每个飞行模式的总体情景目标检测率超过90%,但对人的检测率约为70%,对汽车的检测率约为80%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号