首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Clustering methods for removing outliers from vision-based range estimates
【24h】

Clustering methods for removing outliers from vision-based range estimates

机译:从视觉范围估计中去除异常值的聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Abstract: The automation of rotorcraft low-altitude flight presents challenging problems in flight control and sensor systems. The currently explored approach uses one or more passive sensors, such as a television camera, to extract environmental obstacle information. Obstacle imagery can be processed using a variety of computer vision techniques to produce a time-varying map of range to obstacles in the sensor's field of view along the helicopter flight path. To maneuver in tight space, obstacle-avoidance methods would need very reliable range map information by which to guide the helicopter through the environment. In general, most low level computer vision techniques generate sparse range maps which include at least a small percentage of bad estimates (outliers). This paper examines two related techniques which can be used to eliminate outliers from a sparse range map. Each method clusters sparse range map information into different spatial classes relying on a segmented and labeled image to help in spatial classification within the image plane.!9
机译:摘要:旋翼飞机低空飞行的自动化在飞行控制和传感器系统中提出了具有挑战性的问题。当前探索的方法使用一个或多个无源传感器(例如电视摄像机)来提取环境障碍物信息。可以使用多种计算机视觉技术处理障碍物图像,以生成沿直升机飞行路径的传感器视场中障碍物的时变范围图。为了在狭窄的空间中进行机动,避障方法将需要非常可靠的距离图信息,通过该信息来引导直升机穿越环境。通常,大多数低级计算机视觉技术都会生成稀疏范围图,其中至少包括一小部分不良估计(异常值)。本文研究了两种相关技术,可用于从稀疏范围图中消除异常值。每种方法都将稀疏的距离图信息聚类到不同的空间类别中,这些信息依赖于经分段和标记的图像,以帮助在图像平面内进行空间分类。9

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号