首页> 外文会议>Intelligent Data Engineering and Automated Learing(IDEAL 2006); Lecture Notes in Computer Science; 4224 >Efficient Classification Method for Complex Biological Literature Using Text and Data Mining Combination
【24h】

Efficient Classification Method for Complex Biological Literature Using Text and Data Mining Combination

机译:文本和数据挖掘结合的复杂生物文献有效分类方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, as the size of genetic knowledge grows faster, the automated analysis and systemization into high-throughput database has become a hot issue. In bioinformatics area, one of the essential tasks is to recognize and identify genomic entities and discover their relations from various sources. Generally, biological literatures containing ambiguous entities, are laid by decision boundaries. The purpose of this paper is to design and implement a classification system for improving performance in identifying entity problems. The system is based on reinforcement training and post-processing method and supplemented by data mining algorithms to enhance its performance. For experiments, we add some intentional noises to training data for testing the robustness and stability. The result shows significantly improved stability on training errors.
机译:近年来,随着遗传知识的增长速度越来越快,将自动化分析和系统化成高通量数据库已成为一个热门问题。在生物信息学领域,基本任务之一是识别和识别基因组实体,并从各种来源发现它们之间的关系。通常,包含歧义实体的生物学文献是由决策边界奠定的。本文的目的是设计和实现一种分类系统,以提高识别实体问题的性能。该系统基于强化训练和后处理方法,并辅以数据挖掘算法以增强其性能。对于实验,我们在训练数据中添加一些故意的噪声以测试鲁棒性和稳定性。结果表明,训练错误的稳定性得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号