首页> 外文会议>Intelligent Computing: Theory and Applications III >Grading smart sensors: Performance assessment and ranking using familiar scores like A+ to D-
【24h】

Grading smart sensors: Performance assessment and ranking using familiar scores like A+ to D-

机译:为智能传感器评分:使用A +至D-等熟悉的评分对性能进行评估和排名

获取原文
获取原文并翻译 | 示例

摘要

Starting with the supposition that the product of smart sensors—whether autonomous, networked, or fused—is in all cases information, it is shown here using information theory how a metric Q, ranging between 0 and 100%, can be derived to assess the quality of the information provided. The analogy with student grades is immediately evident and elaborated. As with student grades, numerical percentages suggest more precision than can be justified, so a conversion to letter grades A+ to D- is desirable. Owing to the close analogy with familiar academic grades, moreover, the new grade is a measure of effectiveness (MOE) that commanders and decision makers should immediately appreciate and find quite natural, even if they do not care to follow the methodology behind the performance test, as they focus on higher-level strategic matters of sensor deployment or procurement. The metric is illustrated by translating three specialist performance tests—the Receiver Operating Characteristic (ROC) curve, the Constant False Alarm Rate (CFAR) approach, and confusion matrices—into letter grades for use then by strategists. Actual military and security systems are included among the examples.
机译:从假定智能传感器的产品(无论是自主的,联网的还是融合的)在所有情况下都是信息开始,这里使用信息论证表明如何得出0至100%之间的量度Q来评估所提供信息的质量。与学生成绩的类比立即显而易见并得到阐述。与学生成绩一样,数字百分比表示的准确性比合理的要高,因此最好将字母成绩从A +转换为D-。此外,由于与熟悉的学术成绩有着相似的比喻,新成绩是对有效性(MOE)的一种度量,指挥官和决策者应该立即欣赏并发现它很自然,即使他们不愿意遵循绩效测试的方法,因为它们专注于传感器部署或采购的高层战略事务。通过将三个专业性能测试(接收器工作特性(ROC)曲线,恒定误报率(CFAR)方法和混淆矩阵)转换为字母等级以供战略家使用,可以说明该度量标准。示例中包括实际的军事和安全系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号