首页> 外文会议>Intelligent Computing: Theory and Applications III >Exploratory Data Analysis Methods Applied to fMRI
【24h】

Exploratory Data Analysis Methods Applied to fMRI

机译:探索性数据分析方法在功能磁共振成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

Exploratory data-driven methods such as unsupervised clustering and independent component analysis (ICA) are considered to be hypothesis-generating procedures, and are complementary to the hypothesis-led statistical inferential methods in functional magnetic resonance imaging (fMRI). In this paper, we present a comparison between unsupervised clustering and ICA in a systematic fMRI study. The comparative results were evaluated by a very detailed ROC analysis. For the fMRI data, a comparative quantitative evaluation between the three clustering techniques, SOM, "neural gas" network, and fuzzy clustering based on deterministic annealing, and the three ICA methods, FastICA, Infomax and topographic ICA was performed. The ICA methods proved to extract features relatively well for a small number of independent components but are limited to the linear mixture assumption. The unsupervised clustering outperforms ICA in terms of classification results but requires a longer processing time than the ICA methods.
机译:探索性的数据驱动方法,例如无监督聚类和独立成分分析(ICA)被认为是假设生成过程,是功能磁共振成像(fMRI)中由假设主导的统计推断方法的补充。在本文中,我们将在系统性fMRI研究中比较无监督聚类和ICA。通过非常详细的ROC分析评估了比较结果。对于fMRI数据,对三种聚类技术SOM,“神经网络”和基于确定性退火的模糊聚类以及三种ICA方法FastICA,Infomax和地形ICA进行了比较定量评估。事实证明,ICA方法对于少量独立成分提取特征相对较好,但仅限于线性混合假设。就分类结果而言,无监督聚类优于ICA,但比ICA方法需要更长的处理时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号