首页> 外文会议>Integer programming and combinatoral optimization >A Probabilistic Analysis of the Strength of the Split and Triangle Closures
【24h】

A Probabilistic Analysis of the Strength of the Split and Triangle Closures

机译:三角形和三角形闭合件强度的概率分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider the relaxation of the corner polyhedron introduced by Andersen et al., which we denote by RCP. We study the relative strength of the split and triangle cuts of RCP's. Basu et al. showed examples where the split closure can be arbitrarily worse than the triangle closure under a 'worst-cost' type of measure. However, despite experiments carried out by several authors, the usefulness of triangle cuts in practice has fallen short of its theoretical strength. In order to understand this issue, we consider two types of measures between the closures: the 'worst-cost' one mentioned above, where we look at the weakest direction of the split closure, and the 'average-cost' measure which takes an average over all directions. Moreover, we consider a natural model for generating random RCP's. Our first result is that, under the worst-cost measure, a random RCP has a weak split closure with reasonable probability. This shows that the bad examples given by Basu et al. are not pathological cases. However, when we consider the average-cost measure, with high probability both split and triangle closures obtain a very good approximation of the RCP. The above result holds even if we replace split cuts by the simple split or Gomory cuts. This gives an indication that split/Gomory cuts are indeed as useful as triangle cuts.
机译:在本文中,我们考虑了由Andersen等人引入的角多面体的松弛,我们用RCP表示。我们研究了RCP的裂口和三角形切口的相对强度。 Basu等。给出了一些示例,其中在“最差成本”类型的度量下,分割闭合可能比三角形闭合更糟。但是,尽管有几位作者进行了实验,但实际上三角形切割的实用性还不足以达到其理论上的优势。为了理解此问题,我们考虑了两种封闭措施之间的两种类型的度量:上面提到的“最差成本”度量,它考察了分割封闭的最弱方向,而“平均成本”度量则采用了平均各个方向。此外,我们考虑了用于生成随机RCP的自然模型。我们的第一个结果是,在成本最坏的情况下,随机RCP具有较弱的拆分闭合且具有合理的概率。这表明Basu等人给出的不良例子。不是病理病例。但是,当我们考虑平均成本测度时,拆分和三角形闭合都很有可能获得RCP的很好的近似值。即使我们用简单的分割或Gomory分割代替分割,上述结果仍然成立。这表明分割/高通切角确实与三角形切角一样有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号