首页> 外文会议>Information Retrieval Technology; Lecture Notes in Computer Science; 4182 >Adapting Document Ranking to Users' Preferences Using Click-Through Data
【24h】

Adapting Document Ranking to Users' Preferences Using Click-Through Data

机译:使用点击型数据使文档排名适应用户的偏好

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new approach to ranking the documents retrieved by a search engine using click-through data. The goal is to make the final ranked list of documents accurately represent users' preferences reflected in the click-through data. Our approach combines the ranking result of a traditional IR algorithm (BM25) with that given by a machine learning algorithm (Naive Bayes). The machine learning algorithm is trained on click-through data (queries and their associated documents), while the IR algorithm runs over the document collection. We consider several alternative strategies for combining the result of using click-through data and that of using document data. Experimental results confirm that any method of using click-through data greatly improves the preference ranking, over the method of using BM25 alone. We found that a linear combination of scores of Na?ve Bayes and scores of BM25 performs the best for the task. At the same time, we found that the preference ranking methods can preserve relevance ranking, I.e., the preference ranking methods can perform as well as BM25 for relevance ranking.
机译:本文提出了一种使用点击数据对搜索引擎检索的文档进行排名的新方法。目的是使最终排名的文档列表准确地代表点击数据中反映的用户偏好。我们的方法将传统IR算法(BM25)的排名结果与机器学习算法(Naive Bayes)给出的排名结果相结合。机器学习算法针对点击型数据(查询及其相关文档)进行训练,而IR算法则遍历文档集合。我们考虑了几种替代策略,用于组合使用点击数据和使用文档数据的结果。实验结果证实,与单独使用BM25的方法相比,使用点击数据的任何方法都可以大大提高偏好排名。我们发现,朴素贝叶斯分数和BM25分数的线性组合对任务的执行效果最佳。同时,我们发现偏好排名方法可以保留相关性排名,即偏好排名方法的效果与BM25相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号