首页> 外文会议>Industrial Applications of AI (Artificial Intelligence) >A model selection criterion for classification: application to HMM topology optimization
【24h】

A model selection criterion for classification: application to HMM topology optimization

机译:分类的模型选择标准:在HMM拓扑优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a model selection criterion for classification problems. The criterion focuses on selecting models that are discriminant instead of models based on the Occam's razor principle of parsimony between accurate modeling and complexity. The criterion, dubbed discriminative information criterion (DIC), is applied to the optimization of hidden Markov model topology aimed at the recognition of cursively-handwritten digits. The results show that DIC-generated models achieve 18% relative improvement in performance from a baseline system generated by the Bayesian information criterion (BIC).
机译:本文提出了分类问题的模型选择准则。该标准侧重于选择具有区别性的模型,而不是基于Occam精确建模与复杂性之间的简约剃刀原则的模型。该标准称为判别性信息标准(DIC),适用于旨在识别草书手写数字的隐马尔可夫模型拓扑的优化。结果表明,DIC生成的模型相对于由贝叶斯信息标准(BIC)生成的基准系统实现了18%的相对性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号