首页> 外文期刊>Soft computing: A fusion of foundations, methodologies and applications >Optimized ensemble modeling based on feature selection using simple sphere criterion for multi-scale mechanical frequency spectrum
【24h】

Optimized ensemble modeling based on feature selection using simple sphere criterion for multi-scale mechanical frequency spectrum

机译:基于特征选择的优化集合建模,使用简单球体对多尺度机械频谱标准

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Several parameters of industrial processes are indirectly measured by multi-scale mechanical frequency spectrum. Selecting suitable mechanical sub-signals and relevant frequency spectral features for different process parameters remains an open issue. This study proposes a new optimized ensemble model based on feature selection using simple sphere criterion (SSC). Mechanical signals are adaptively decomposed and transformed into frequency spectral data with different timescales. These spectral data are fed into adaptive multi-scale spectral feature selection and modeling framework, in which local-scale frequency spectral features are adaptively selected with concurrent projection to latent structures and SSC based on unscaled data. The optimized ensemble model is constructed with selective information fusion strategy based on reduced frequency spectral data. The feature selection and model learning parameters are jointly selected. Simulation results based on the mechanical vibration and acoustic signals of an experimental laboratory-scale ball mill show the effectiveness of the proposed scheme.
机译:通过多尺度机械频谱间接测量工业过程的几个参数。选择合适的机械子信号和不同过程参数的相关频谱特征仍然是一个开放问题。本研究提出了一种基于使用简单球标准(SSC)的特征选择的新优化集合模型。机械信号自适应地分解和转换成具有不同时间尺度的频谱数据。这些光谱数据被馈送到自适应多尺度光谱特征选择和建模框架中,其中基于未坐标的数据,通过并发投影自适应地选择本地刻度频谱特征,并基于未划分的数据,以潜在结构和SSC自适应。优化的集合模型是基于减小的频谱数据的选择性信息融合策略构建。共同选择特征选择和模型学习参数。基于实验实验室规模球磨机的机械振动和声学信号的仿真结果表明了所提出的方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号