首页> 外文会议>Image understanding workshop >A MULTISTRATEGY LEARNING APPROACH FOR TARGET MODEL RECOGNITION, ACQUISITION, AND REFINEMENT
【24h】

A MULTISTRATEGY LEARNING APPROACH FOR TARGET MODEL RECOGNITION, ACQUISITION, AND REFINEMENT

机译:目标模型识别,获取和完善的多策略学习方法

获取原文
获取原文并翻译 | 示例

摘要

Target recognition systems are currently unable to modify their behavior automatically in environments where processing requirements change or novel situations are encountered. Most systems can not easily adapt to varying target appearances, considerable image noise, and target occlusion. More importantly, these systems are constrained by the selection of target models used for recognition; typically, the target model database is fixed and individual features within a target model remain static as well. The incorporation of machine learning technology into the target recognition process will allow the system to use situation context, to adapt in changing environments, and to improve the system's performance over time. This work describes an innovative approach which combines machine learning and target recognition into an integrated system. The system is called TRIPLE: Target Recognition Incorporating Positive Learning Expertise. It uses two machine learning techniques known as explanation-based learning and structured conceptual clustering, combined in a synergistic manner, which provide effective target model recognition, acquisition, and refinement capabilities. We provide an overview of the TRIPLE system and provide experimental results which illustrates the performance of the system.
机译:目标识别系统当前无法在处理要求发生变化或遇到新情况的环境中自动修改其行为。大多数系统无法轻松适应变化的目标外观,可观的图像噪声和目标遮挡。更重要的是,这些系统受到用于识别的目标模型的选择的约束。通常,目标模型数据库是固定的,目标模型中的各个要素也保持不变。将机器学习技术整合到目标识别过程中将使系统能够使用情况上下文,适应不断变化的环境并随着时间的推移提高系统的性能。这项工作描述了一种将机器学习和目标识别结合到一个集成系统中的创新方法。该系统称为TRIPLE:结合了积极学习专长的目标识别。它使用两种机器学习技术,称为基于解释的学习和结构化的概念聚类,以协同方式进行组合,可提供有效的目标模型识别,获取和优化功能。我们提供了TRIPLE系统的概述,并提供了说明该系统性能的实验结果。

著录项

  • 来源
    《Image understanding workshop》|1990年|742-756|共15页
  • 会议地点 Pittsburgh PA(US)
  • 作者

    John Ming; Bir Bhanu;

  • 作者单位

    Honeywell Systems and Research Center 3660 Technology Drive Minneapolis, Minnesota 55418;

    Honeywell Systems and Research Center 3660 Technology Drive Minneapolis, Minnesota 55418;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机的应用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号