首页> 外文会议>Image quality and system performance XII >Image quality optimization, via application of contextual contrast sensitivity and discrimination functions
【24h】

Image quality optimization, via application of contextual contrast sensitivity and discrimination functions

机译:通过应用上下文对比敏感度和判别功能优化图像质量

获取原文
获取原文并翻译 | 示例

摘要

What is the best luminance contrast weighting-function for image quality optimization? Traditionally measured contrast sensitivity functions (CSFs), have been often used as weighting-functions in image quality and difference metrics. Such weightings have been shown to result in increased sharpness and perceived quality of test images. We suggest contextual CSFs (cCSFs) and contextual discrimination Junctions (cVPFs) should provide bases for further improvement, since these are directly measured from pictorial scenes, modeling threshold and suprathreshold sensitivities within the context of complex masking information. Image quality assessment is understood to require detection and discrimination of masked signals, making contextual sensitivity and discrimination functions directly relevant. In this investigation, test images are weighted with a traditional CSF, cCSF, cVPF and a constant function. Controlled mutations of these functions are also applied as weighting-functions, seeking the optimal spatial frequency band weighting for quality optimization. Image quality, sharpness and naturalness are then assessed in two-alternative forced-choice psychophysical tests. We show that maximal quality for our test images, results from cCSFs and cVPFs, mutated to boost contrast in the higher visible frequencies.
机译:用于图像质量优化的最佳亮度对比度加权函数是什么?传统上测量的对比度敏感度函数(CSF)通常被用作图像质量和差异度量中的加权函数。已经表明,这种加权导致增加的清晰度和测试图像的感知质量。我们建议上下文CSF(cCSF)和上下文歧视交界处(cVPF)应该提供进一步改进的基础,因为这些是直接从图形场景,建模阈值和超阈值敏感度在复杂掩盖信息的上下文中进行测量的。图像质量评估应理解为需要检测和掩蔽信号的鉴别,从而使上下文敏感性和鉴别功能直接相关。在这项研究中,使用传统的CSF,cCSF,cVPF和常数函数对测试图像进​​行加权。这些功能的受控突变也可以用作加权功能,以寻求用于质量优化的最佳空间频带加权。然后在两种选择的强制选择心理物理测试中评估图像质量,清晰度和自然度。我们显示,测试图像的最高质量(来自cCSF和cVPF的结果)发生了突变,以提高较高可见频率下的对比度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号