首页> 外文会议>Image Processing pt.1 >Improved methods for parameter estimation of mixture Gaussian model using genetic and maximum likelihood algorithms
【24h】

Improved methods for parameter estimation of mixture Gaussian model using genetic and maximum likelihood algorithms

机译:使用遗传和最大似然算法的混合高斯模型参数估计的改进方法

获取原文

摘要

We present new approaches based on Genetic Algorithms (GAs), Simulated Annealing (SA) and Expectation Maximization (EM) for determining parameters of the mixture Gaussian model. GAs are adaptive search techniques designed to search for near optimal solutions of large-scale optimization problems with multiple local maxima. It has been shown that GAs are independent of initialization parameters and can efficiently optimize functions in large search spaces while the solution obtained by EM is a function of initial parameters. Hence there is a relatively high likelihood of achieving sub-optimal solution, due to trapping in local maxima. In this work, we propose a combination of Genetic Algorithm with EM (Interlaced GA-EM) to improve estimation of Gaussian mixture parameters. The method uses population of mixture models, rather than a single mixture, iteratively in both GA and EM to determine Gaussian mixture parameters. To assess the performance of the proposed methods, a series of Gaussian phantoms, based on the modified Shepp-Logan method, were created. All proposed methods were employed to estimate the tissue parameters in each phantom The results indicate that the EM algorithm, as expected, is heavily affected by the initial values. The best result in terms of computational time and accuracy was obtained from Interlaced GA-EM. The proposed method offers an accurate and stable solution for parameter estimation on Gaussian mixture models, with higher likelihood of achieving global optimal minima. Obtaining such accurate parameter estimation is a key requirement for several image segmentation approaches, which rely on a priori knowledge of tissue distribution.
机译:我们提出了基于遗传算法(GA),模拟退火(SA)和期望最大化(EM)的新方法,用于确定混合高斯模型的参数。 GA是一种自适应搜索技术,旨在搜索具有多个局部最大值的大规模优化问题的近似最优解。已经表明,遗传算法与初始化参数无关,并且可以有效地优化大型搜索空间中的函数,而由EM获得的解是初始参数的函数。因此,由于陷于局部最大值中,因此存在次优解决方案的可能性相对较高。在这项工作中,我们提出了遗传算法与EM(隔行GA-EM)的组合,以提高对高斯混合参数的估计。该方法在GA和EM中迭代使用混合模型而不是单个混合模型来确定高斯混合参数。为了评估所提出方法的性能,基于改进的Shepp-Logan方法,创建了一系列高斯体模。所有提出的方法都用于估计每个体模中的组织参数。结果表明,EM算法与预期的一样,受到初始值的严重影响。从计算时间和准确性方面来看,最佳结果是从Interlaced GA-EM获得的。所提出的方法为高斯混合模型的参数估计提供了准确而稳定的解决方案,并且具有实现全局最优最小值的更高可能性。获得这种精确的参数估计是几种图像分割方法的关键要求,这些方法依赖于组织分布的先验知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号