首页> 外文会议>Image processing: machine vision applications VI >A modified Hierarchical graph cut based video segmentation approach for high frame rate video
【24h】

A modified Hierarchical graph cut based video segmentation approach for high frame rate video

机译:一种改进的基于分层图割的视频高帧率视频分割方法

获取原文
获取原文并翻译 | 示例

摘要

Video object segmentation entails selecting and extracting objects of interest from a video sequence. Video Segmentation of Objects (VSO) is a critical task which has many applications, such as video edit, video decomposition and object recognition. The core of VSO system consists of two major problems of computer vision, namely object segmentation and object tracking. These two difficulties need to be solved in tandem in an efficient manner to handle variations in shape deformation, appearance alteration and background clutter. Along with segmentation efficiency computational expense is also a critical parameter for algorithm development. Most existing methods utilize advanced tracking algorithms such as mean shift and particle filter, applied together with object segmentation schemes like Level sets or graph methods. As video is a spatiotemporal data, it gives an extensive opportunity to focus on the regions of high spatiotemporal variation. We propose a new algorithm to concentrate on the high variations of the video data and use modified hierarchical processing to capture the spatiotemporal variation. The novelty of the research presented here is to utilize a fast object tracking algorithm conjoined with graph cut based segmentation in a hierarchical framework. This involves modifying both the object tracking algorithm and the graph cut segmentation algorithm to work in an optimized method in a local spatial region while also ensuring all relevant motion has been accounted for. Using an initial estimate of object and a hierarchical pyramid framework the proposed algorithm tracks and segments the object of interest in subsequent frames. Due to the modified hierarchal framework we can perform local processing of the video thereby enabling the proposed algorithm to target specific regions of the video where high spatiotemporal variations occur. Experiments performed with high frame rate video data shows the viability of the proposed approach.
机译:视频对象分割需要从视频序列中选择和提取感兴趣的对象。对象视频分割(VSO)是一项至关重要的任务,它具有许多应用程序,例如视频编辑,视频分解和对象识别。 VSO系统的核心包括计算机视觉的两个主要问题,即对象分割和对象跟踪。需要以有效的方式串联解决这两个困难,以应对形状变形,外观变化和背景混乱的变化。除分割效率外,计算费用也是算法开发的关键参数。大多数现有方法利用诸如均值平移和粒子滤波之类的高级跟踪算法,以及诸如水平集或图形方法之类的对象分割方案一起应用。由于视频是时空数据,因此它提供了广泛的机会来关注时空变化较大的区域。我们提出了一种新的算法来专注于视频数据的高变化,并使用改进的分层处理来捕获时空变化。这里提出的研究的新颖性是在分层框架中利用快速对象跟踪算法与基于图割的分割相结合。这涉及修改对象跟踪算法和图切割分割算法,以在局部空间区域中以优化方法工作,同时还确保已考虑所有相关运动。使用对象的初始估计和分层金字塔框架,所提出的算法在后续帧中跟踪和分割感兴趣的对象。由于修改了层次结构,我们可以对视频执行本地处理,从而使所提出的算法能够将发生高时空变化的视频定位到特定区域。使用高帧频视频数据进行的实验表明了该方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号