首页> 外文会议>Image processing: algorithms and systems XI >Formulation, analysis, and hardware implementation of chaotic dynamics based algorithm for compression and feature recognition in digital images
【24h】

Formulation, analysis, and hardware implementation of chaotic dynamics based algorithm for compression and feature recognition in digital images

机译:基于混沌动力学的数字图像压缩和特征识别算法的制定,分析和硬件实现

获取原文
获取原文并翻译 | 示例

摘要

In this paper we will discuss the utilization of a set of waveforms derived from chaotic dynamical systems for compression and feature recognition in digital images. We will also describe the design and testing of an embedded systems implementation of the algorithm. We will show that a limited set of combined chaotic oscillations are sufficient to form a basis for the compression of thousands of digital images. We will demonstrate this in the analysis of images extracted from the solar heliospheric observatory (SOHO), showing that we are able to detect coronal mass ejections (CMEs) in quadrants of the image data during a severe solar event. We undertake hardware design in order to optimize the speed of the algorithm, taking advantage of its parallel nature. We compare the calculation speed of the algorithm in compiled C, enhanced Matlab, Simulink, and in hardware.
机译:在本文中,我们将讨论利用混沌动力学系统中的一组波形进行数字图像中的压缩和特征识别。我们还将描述嵌入式系统算法实现的设计和测试。我们将显示有限的组合混沌振荡集合足以形成数千个数字图像压缩的基础。我们将在对太阳太阳大气天文台(SOHO)提取的图像进行分析时证明这一点,表明我们能够在严重的太阳事件期间检测图像数据象限中的日冕物质抛射(CME)。我们利用其并行性来进行硬件设计,以优化算法的速度。我们在编译的C,增强的Matlab,Simulink和硬件中比较了算法的计算速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号