首页> 外文会议>Image processing: Algorithms and systems VIII >Latent Common Origin of Bilateral Filter and Non-Local Means Filter
【24h】

Latent Common Origin of Bilateral Filter and Non-Local Means Filter

机译:双边过滤器和非局部均值过滤器的潜在共同起源

获取原文
获取原文并翻译 | 示例

摘要

The bilateral filter and the non-local means (NL-means) filter are known as very powerful nonlinear filters. The first contribution of this paper is to give a general framework which involves the bilateral filter and the NL-means filter. The general framework is derived based on Bayesian inference. Our analysis reveals that the range weight in the bilateral filter and the similarity measure in the NL-means filter are associated with a noise model or a likelihood distribution. The second contribution is to extend the bilateral filter and the NL-means filter for a general noise model. We also provide a filter classification. The filter classification framework clarifies the differences among existing filters and helps us to develop new filters. As example of future directions, we extend the bilateral filter and the NL-means filter for a general noise model. Both extended niters are theoretically and experimentally justified.
机译:双边滤波器和非局部均值(NL-means)滤波器被称为非常强大的非线性滤波器。本文的第一个贡献是给出一个包含双边滤波器和NL-均值滤波器的通用框架。通用框架是基于贝叶斯推论得出的。我们的分析表明,双边滤波器中的距离权重和NL-均值滤波器中的相似性度量与噪声模型或似然分布相关。第二个贡献是扩展了通用噪声模型的双边滤波器和NL-均值滤波器。我们还提供了过滤器分类。过滤器分类框架阐明了现有过滤器之间的差异,并帮助我们开发新的过滤器。作为未来方向的示例,我们将双边滤波器和NL-均值滤波器扩展为通用噪声模型。在理论上和实验上,这两种延长的硝子都是合理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号