首页> 外文会议>Image Analysis and Recognition pt.2; Lecture Notes in Computer Science; 4142 >Object Categorization Using Kernels Combining Graphs and Histograms of Gradients
【24h】

Object Categorization Using Kernels Combining Graphs and Histograms of Gradients

机译:使用核结合图和直方图的对象分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method for object categorization. This problem is difficult and can be solved by combining different information sources such as shape or appearance. In this paper, we aim at performing object recognition by mixing kernels obtained from different cues. Our method is based on two complementary descriptions of an object. First, we describe its shape thanks to labeled graphs. This graph is obtained from morphological skeleton, extracted from the binary mask of the object image. The second description uses histograms of oriented gradients which aim at capturing objects appearance. The histogram descriptor is obtained by computing local histograms over the complete image of the object. These two descriptions are combined using a kernel product. Our approach has been validated on the ETH80 database which is composed of 3280 images gathered in 8 classes. The results we achieved show that this method can be very efficient.
机译:本文提出了一种对象分类方法。这个问题很难解决,可以通过组合不同的信息源(例如形状或外观)来解决。在本文中,我们旨在通过混合从不同线索获得的内核来执行对象识别。我们的方法基于对象的两个互补描述。首先,我们借助标记图来描述其形状。该图是从形态骨架中提取的,该骨架是从对象图像的二值蒙版提取的。第二个描述使用旨在捕获对象外观的定向渐变直方图。直方图描述符是通过计算对象完整图像上的局部直方图获得的。使用内核产品将这两个描述结合在一起。我们的方法已在ETH80数据库中得到验证,该数据库由8类中收集的3280张图像组成。我们获得的结果表明,该方法可以非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号