首页> 外文会议>IFIP TC8 international conference on computer information systems and industrial management >Multi-muscle Texture Analysis for Dystrophy Development Identification in Golden Retriever Muscular Dystrophy Dogs
【24h】

Multi-muscle Texture Analysis for Dystrophy Development Identification in Golden Retriever Muscular Dystrophy Dogs

机译:多肌纹理分析在金毛猎犬中的营养不良发育鉴定。

获取原文

摘要

The study assesses the suitability of multi-muscle texture analysis (TA) for the dystrophy development characterization in Golden Retriever Muscular Dystrophy (GRMD) dogs. Textural features, statistical and model-based, are derived from T2-weighted Magnetic Resonance Images (MRI) of canine hindlimb muscles. Features obtained from different types of muscles (EDL, GasLat, GasMed, and TC) are analyzed simultaneously. Four phases of dystrophy progression, including the 'zero phase' - the absence of the disease, are differentiated. Two classifiers are applied: Support Vector Machines (SVM) and Adaptive Boosting (AdaBoost). A Monte Carlo-based feature selection enables to find features (and the corresponding muscle types) that are the most useful in identifying the phase of dystrophy. The simultaneous consideration of several muscles improves the classification accuracy by maximum 12.5% in comparison to the best corresponding result achieved with single-muscle TA. A combination of 17 textural features derived from different types of muscles provides a classification accuracy of approximately 82%.
机译:这项研究评估了多肌肉质地分析(TA)对金毛猎犬肌肉营养不良(GRMD)狗营养不良发育特征的适用性。统计和基于模型的纹理特征来自犬后肢肌肉的T2加权磁共振图像(MRI)。同时分析从不同类型的肌肉(EDL,GasLat,GasMed和TC)获得的特征。营养不良发展的四个阶段,包括“零阶段”-疾病的缺乏,被区分。应用了两个分类器:支持向量机(SVM)和自适应增强(AdaBoost)。基于蒙特卡洛的特征选择可以找到在识别营养不良阶段最有用的特征(以及相应的肌肉类型)。与单肌肉TA获得的最佳对应结果相比,同时考虑几种肌肉可将分类准确度提高最多12.5%。来自不同类型肌肉的17种纹理特征的组合提供了大约82%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号