首页> 外文会议>IFAC (International Federation of Automatic Control) World Congress >DETECTION OF STATE-OF-CHARGE IN LEAD ACID BATTERY USING RBF-NN
【24h】

DETECTION OF STATE-OF-CHARGE IN LEAD ACID BATTERY USING RBF-NN

机译:利用RBF-NN检测铅酸蓄电池中的荷电状态

获取原文

摘要

To realize a stable supply of electric power in an automobile, an accurate and reliable detection method of SOC (state-of-charge) in a lead acid battery is required. However the dynamics of the battery is very complicated. The characteristics of the battery greatly change due to its degradation. Moreover a automobile has many driving patterns, which are unknown beforehand. Thus it is not easy to detect the SOC analytically. In this paper, to overcome this problem, a new SOC detection method with a radial base function neural network is proposed. The detection accuracies for different sized batteries, various degradation states and driving patterns are investigated.
机译:为了实现汽车中稳定的电力供应,需要一种准确可靠的铅酸电池中SOC(充电状态)的检测方法。然而,电池的动力学非常复杂。电池的特性由于其退化而大大改变。此外,汽车具有许多事先未知的驾驶模式。因此,分析检测SOC并不容易。为了克服这个问题,提出了一种基于径向基函数神经网络的SOC检测方法。研究了不同尺寸电池,各种退化状态和驱动方式的检测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号