【24h】

NONCOMMUTATIVE CONVEXITY VS LMI'S

机译:非交换性对LMI

获取原文

摘要

Most linear control problems convert directly to matrix inequalities, Mis. Many of these are badly behaved but a classical core of problems convert to linear matrix inequalities (LMIs). In many engineering systems problems convexity has all of the advantages of a LMI. Since LMIs have a structure which is seemingly much more ridged than convexity, there is the hope that a convexity based theory will be less restrictive than LMIs. A dimensionless MI is a MI where the unknowns are matrices and appear in the formula in a manner which respects matrix multiplication. This holds for most of the classic Mis of control theory. The results presented here suggest the surprising conclusion that for dimensionless Mis convexity o?ers no greater generality than LMIs. In fact, we prove, for a class of model situations, that a convex dimensionless MI is equivalent to an LMI.
机译:大多数线性控制问题直接转换为矩阵不等式Mis。其中许多行为不当,但问题的经典核心转换为线性矩阵不等式(LMI)。在许多工程系统中,凸度具有LMI的所有优点。由于LMI的结构似乎比凸形的脊多得多,因此希望基于凸形的理论比LMI的约束少。无量纲MI是其中未知数是矩阵并以尊重矩阵乘法的方式出现在公式中的MI。这适用于大多数经典的Mis控制理论。此处给出的结果表明了令人惊讶的结论,即对于无量纲的Mis凸度,其普遍性不比LMI大。实际上,对于一类模型情况,我们证明了凸的无量纲MI等效于LMI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号