首页> 外文会议>IFAC (International Federation of Automatic Control) World Congress >USE OF AN AUTOASSOCIATIVE NEURAL NETWORK FOR DYNAMIC DATA RECONCILIATION
【24h】

USE OF AN AUTOASSOCIATIVE NEURAL NETWORK FOR DYNAMIC DATA RECONCILIATION

机译:使用自联想神经网络进行动态数据协调

获取原文

摘要

The technique of dynamic data reconciliation has been previously studied in the literature and shown to be an effective tool to better estimate the true values of process variables by using information from both measured values and process models. Real-time implementation of dynamic data reconciliation involves solving complex optimization problem, leading to large computation time. This paper presents a study on the use of a dynamic Autoassociative Neural Network (AANN) for dynamic data reconciliation. Once trained, the AANN can be directly used for online signal validation. Closed-loop performance of the AANN for both linear and nonlinear processes was evaluated using simulations of two storage tank processes. The AANN provided accurate estimates of measured values for the two processes studied in this investigation.
机译:动态数据协调技术先前已经在文献中进行了研究,并且被证明是一种通过使用来自测量值和过程模型的信息来更好地估计过程变量的真实值的有效工具。动态数据协调的实时实施涉及解决复杂的优化问题,从而导致大量的计算时间。本文介绍了使用动态自动关联神经网络(AANN)进行动态数据协调的研究。训练后,AANN可以直接用于在线信号验证。 AANN在线性和非线性过程中的闭环性能都通过对两个储罐过程的仿真来评估。 AANN为这项研究中研究的两个过程提供了测量值的准确估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号