首页> 外文会议>IEEE/RSJ International Conference on Intelligent Robots and Systems;IROS 2009 >Step-size parameter adaptation of multi-channel semi-blind ICA with piecewise linear model for barge-in-able robot audition
【24h】

Step-size parameter adaptation of multi-channel semi-blind ICA with piecewise linear model for barge-in-able robot audition

机译:分段线性模型的多通道半盲ICA步长参数自适应

获取原文

摘要

This paper describes a step-size parameter adaptation technique of multi-channel semi-blind independent component analysis (MCSB-ICA) for a ¿barge-in-able¿ robot audition system. By ¿barge-in¿, we mean that the user can speak simultaneously when the robot is speaking.We focused on MCSB-ICA to achieve such an audition system because it can separate a user's and a robot's speech under reverberant environments. The problem with MCSB-ICA for robot audition is the slow speed of convergence in estimating a separation filter due to its step-size parameters. Many optimization methods cannot be adopted because their computational costs are proportional to the 2nd order of the reverberation time. Our method yields adaptive step-size parameters with MCSB-ICA at low computational costs. It is based on three techniques; (1) recursive expression of the separation process, (2) a piecewise linear model of the step-size of the separation filter, and (3) adaptive step-size parameters with a sub-ICA-filter. Experimental results show that our approach attains faster convergence speed and lower computational costs than those with a fixed step-size parameter.
机译:本文介绍了一种“可插入”机器人试听系统的多通道半盲独立成分分析(MCSB-ICA)的步长参数自适应技术。 “插入”是指用户可以在机器人说话时同时讲话。我们专注于MCSB-ICA以实现这样的试听系统,因为它可以在混响环境中分离用户和机器人的语音。用于机器人试听的MCSB-ICA的问题在于,由于其步长参数,在估计分离过滤器时收敛速度很慢。许多优化方法无法采用,因为它们的计算量与混响时间的二阶成正比。我们的方法使用MCSB-ICA可以以较低的计算成本生成自适应步长参数。它基于三种技术; (1)递归表示分离过程,(2)分离滤波器步长的分段线性模型,以及(3)具有子ICA滤波器的自适应步长参数。实验结果表明,与具有固定步长参数的方法相比,我们的方法具有更快的收敛速度和更低的计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号