首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Blind Source Separation With Parameter-Free Adaptive Step-Size Method for Robot Audition
【24h】

Blind Source Separation With Parameter-Free Adaptive Step-Size Method for Robot Audition

机译:无参数自适应步长盲源分离技术在机器人试听中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an adaptive step-size method for blind source separation (BSS) suitable for robot audition systems. The design of the step-size parameter is a critical consideration when we apply BSS to real-world applications such as robot audition systems, because the surrounding environment dynamically changes in the real world. It is common to use a fixed step-size parameter that was obtained empirically. However, because of environmental changes and noise, the performance of BSS with a fixed step-size parameter deteriorates and the separation matrix sometimes diverges. Several adaptive step-size methods for BSS have been proposed. However, there are difficulties when applying them to robot audition systems for example, low-computational cost requirements, being free from manual parameter adjustment and so on. We propose an adaptive step-size method suitable for robot audition systems. The proposed method has the following merits: 1) low computational cost; 2) no parameters to be adjusted manually; and 3) no additional preprocessing requirements. We applied our method to six different BSS algorithms for an eight-channel microphone array embedded in Honda's ASIMO robot. The method improved the performance of all six algorithms in experiments on separation and recognition of simultaneous speech. Moreover, the method increased the amount of calculation by less than 10% compared with the original calculation used in most BSS algorithms.
机译:本文提出了一种适用于机器人试听系统的自适应步长大小盲源分离(BSS)方法。当我们将BSS应用于真实世界的应用程序(例如机器人试听系统)时,步长参数的设计是一个关键的考虑因素,因为周围环境在现实世界中会动态变化。通常使用根据经验获得的固定步长参数。但是,由于环境变化和噪声,具有固定步长参数的BSS的性能会下降,分离矩阵有时会发散。已经提出了几种用于BSS的自适应步长方法。但是,将它们应用到机器人试听系统时会遇到困难,例如计算成本低,无需手动调整参数等。我们提出了一种适用于机器人试听系统的自适应步长法。该方法具有以下优点:1)计算成本低; 2)没有参数需要手动调整;和3)没有其他预处理要求。我们将本方法应用于本田ASIMO机器人中嵌入的八通道麦克风阵列的六种不同BSS算法。该方法提高了同时语音分离和识别实验中所有六种算法的性能。此外,与大多数BSS算法中使用的原始计算相比,该方法将计算量增加了不到10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号