首页> 外文会议>IEEE/RSJ International Conference on Intelligent Robots and Systems;IROS 2012 >Fast Nearest Neighbor Search using Approximate Cached k-d tree
【24h】

Fast Nearest Neighbor Search using Approximate Cached k-d tree

机译:使用近似缓存的k-d树进行快速最近邻居搜索

获取原文

摘要

We introduce a fast Nearest Neighbor Search (NNS) algorithm using an Approximate Cached k-d tree (ACk-d tree) structure for low dimensional data sets. The search process of the standard k-d tree starts from the root node and employs a tentative back-tracking search. In contrast, the proposed method begins to search at the appropriate leaf node (cached node) and applies a depth-first nontentative search. This method improves searching speed, with tradeoff of the searching accuracy. To get a proper starting node, the proposed method is based on two properties: i) The ith query point is likely to be close to the (i−1)th query point, ii) The ith query point is likely to be close to the ith model point. These properties are rather right, in case of practical 3D point sets which are consecutively acquired from 3D point sensors (e.g. a stereo camera, the Kinect sensor, and LIDAR). Results show that the search time of the proposed method is superior to other variants of k-d tree for practical point data sets.
机译:我们为低维数据集引入了使用近似缓存的k-d树(ACk-d树)结构的快速最近邻居搜索(NNS)算法。标准k-d树的搜索过程从根节点开始,并采用暂定回溯搜索。相反,所提出的方法开始在适当的叶节点(缓存的节点)处搜索,并应用深度优先的非暂时性搜索。该方法在权衡搜索精度的情况下提高了搜索速度。为了获得合适的起始节点,建议的方法基于两个属性:i)第i个查询点可能靠近第(i-1)个查询点; ii)第i个查询点可能靠近第i个模型点。在从3D点传感器(例如,立体摄像机,Kinect传感器和LIDAR)连续获取的实际3D点集的情况下,这些属性非常正确。结果表明,对于实用点数据集,该方法的搜索时间优于k-d树的其他变体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号