首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Synthesized Texture Quality Assessment via Multi-scale Spatial and Statistical Texture Attributes of Image and Gradient Magnitude Coefficients
【24h】

Synthesized Texture Quality Assessment via Multi-scale Spatial and Statistical Texture Attributes of Image and Gradient Magnitude Coefficients

机译:通过图像和梯度幅度系数的多尺度空间和统计纹理属性进行综合纹理质量评估

获取原文

摘要

Perceptual quality assessment for synthesized textures is a challenging task. In this paper, we propose a training-free reduced-reference (RR) objective quality assessment method that quantifies the perceived quality of synthesized textures. The proposed reduced-reference synthesized texture quality assessment metric is based on measuring the spatial and statistical attributes of the texture image using both image- and gradient-based wavelet coefficients at multiple scales. Performance evaluations on two synthesized texture databases demonstrate that our proposed RR synthesized texture quality metric significantly outperforms both full-reference and RR state-of-the-art quality metrics in predicting the perceived visual quality of the synthesized textures.
机译:合成纹理的感知质量评估是一项艰巨的任务。在本文中,我们提出了一种无训练的减少参考(RR)客观质量评估方法,该方法量化了合成纹理的感知质量。所提出的减少参考的合成纹理质量评估指标基于使用多个尺度的基于图像和梯度的小波系数来测量纹理图像的空间和统计属性。在两个合成纹理数据库上的性能评估表明,我们提出的RR合成纹理质量度量在预测合成纹理的感知视觉质量方面明显优于全参考和RR最新质量度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号