首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >In-place Activated BatchNorm for Memory-Optimized Training of DNNs
【24h】

In-place Activated BatchNorm for Memory-Optimized Training of DNNs

机译:就地激活的BatchNorm,用于DNN的内存优化训练

获取原文

摘要

In this work we present In-Place Activated Batch Normalization (INPLACE-ABN) - a novel approach to drastically reduce the training memory footprint of modern deep neural networks in a computationally efficient way. Our solution substitutes the conventionally used succession of BatchNorm + Activation layers with a single plugin layer, hence avoiding invasive framework surgery while providing straightforward applicability for existing deep learning frameworks. We obtain memory savings of up to 50% by dropping intermediate results and by recovering required information during the backward pass through the inversion of stored forward results, with only minor increase (0.8-2%) in computation time. Also, we demonstrate how frequently used checkpointing approaches can be made computationally as efficient as INPLACE-ABN. In our experiments on image classification, we demonstrate on-par results on ImageNet-1k with state-of-the-art approaches. On the memory-demanding task of semantic segmentation, we report competitive results for COCO-Stuff and set new state-of-the-art results for Cityscapes and Mapillary Vistas. Code can be found at https://github.com/mapillary/inplace_abn.
机译:在这项工作中,我们提出了就地激活批处理规范化(INPLACE-ABN)-一种以计算有效的方式大幅度减少现代深度神经网络的训练内存占用量的新颖方法。我们的解决方案用单个插件层替代了常规使用的BatchNorm + Activation层的继承,因此避免了侵入性框架手术,同时为现有的深度学习框架提供了直接的适用性。通过删除中间结果并在反向传递过程中(通过存储的正向结果的求逆)恢复所需的信息,我们最多可节省50%的内存,而计算时间仅略微增加(0.8-2%)。此外,我们演示了如何使频繁使用的检查点方法在计算上与INPLACE-ABN一样有效。在我们的图像分类实验中,我们使用最新方法在ImageNet-1k上展示了与众不同的结果。在语义分割的内存需求任务上,我们报告了COCO-Stuff的竞争结果,并为Cityscapes和Mapillary Vistas设置了最新的最新结果。可以在https://github.com/mapillary/inplace_abn找到代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号