首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Learning Visual Knowledge Memory Networks for Visual Question Answering
【24h】

Learning Visual Knowledge Memory Networks for Visual Question Answering

机译:学习视觉知识记忆网络以进行视觉问答

获取原文

摘要

Visual question answering (VQA) requires joint comprehension of images and natural language questions, where many questions can't be directly or clearly answered from visual content but require reasoning from structured human knowledge with confirmation from visual content. This paper proposes visual knowledge memory network (VKMN) to address this issue, which seamlessly incorporates structured human knowledge and deep visual features into memory networks in an end-to-end learning framework. Comparing to existing methods for leveraging external knowledge for supporting VQA, this paper stresses more on two missing mechanisms. First is the mechanism for integrating visual contents with knowledge facts. VKMN handles this issue by embedding knowledge triples (subject, relation, target) and deep visual features jointly into the visual knowledge features. Second is the mechanism for handling multiple knowledge facts expanding from question and answer pairs. VKMN stores joint embedding using key-value pair structure in the memory networks so that it is easy to handle multiple facts. Experiments show that the proposed method achieves promising results on both VQA v1.0 and v2.0 benchmarks, while outperforms state-of-the-art methods on the knowledge-reasoning related questions.
机译:视觉问题解答(VQA)需要图像和自然语言问题的共同理解,在这些问题中,许多问题不能直接或清晰地从视觉内容中得到回答,而是需要结构化的人类知识进行推理并得到视觉内容的确认。本文提出了视觉知识记忆网络(VKMN)来解决这个问题,它在端到端学习框架中将结构化的人类知识和深层的视觉特征无缝地整合到了记忆网络中。与利用外部知识来支持VQA的现有方法相比,本文重点介绍了两个缺失的机制。首先是将视觉内容与知识​​事实整合在一起的机制。 VKMN通过将知识三元组(主题,关系,目标)和深层视觉特征共同嵌入视觉知识特征中来解决此问题。第二是处理从问答对扩展的多个知识事实的机制。 VKMN使用键值对结构将联合嵌入存储在内存网络中,以便轻松处理多个事实。实验表明,该方法在VQA v1.0和v2.0基准测试中均取得了令人满意的结果,而在有关知识推理的相关问题上却优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号