首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Interpolation-Based Object Detection Using Motion Vectors for Embedded Real-time Tracking Systems
【24h】

Interpolation-Based Object Detection Using Motion Vectors for Embedded Real-time Tracking Systems

机译:嵌入式实时跟踪系统中使用运动矢量的基于插值的对象检测

获取原文

摘要

Deep convolutional neural networks (CNNs) have achieved outstanding performance in object detection, a crucial task in computer vision. With the computational intensiveness due to repeated convolutions, they consume large amount of power, making them difficult to apply in power-constrained embedded platforms. In this work, we present MVint, a power-efficient detection and tracking framework. MVint combines motion-vector-based interpolator and CNN-based detector to simultaneously achieve high accuracy and energy efficiency by utilizing motion vectors obtained inexpensively in the environments wherein encoding is conducted at the cameras. Through evaluations using MOT16 benchmark that evaluates multiple object tracking, we show MVint maintains 88% MOTA while reducing detection frequency down to 1/12. An implemention of MVint as a system prototype on Xilinx Zynq Ultra-Scale+ MPSoC ZCU102 confirmed that MVint achieves an ideal 12x FPS compared with a vanilla detection approach.
机译:深度卷积神经网络(CNN)在目标检测中取得了出色的性能,这是计算机视觉中的一项关键任务。由于重复的卷积导致计算量大,它们消耗大量功率,从而使其难以应用于功率受限的嵌入式平台。在这项工作中,我们介绍了MVint,一种节能的检测和跟踪框架。 MVint通过利用在摄像机进行编码的环境中廉价获得的运动矢量,结合了基于运动矢量的内插器和基于CNN的检测器,以同时实现高精度和高能效。通过使用评估多个对象跟踪的MOT16基准进行评估,我们显示MVint保持88%的MOTA,同时将检测频率降低到1/12。在Xilinx Zynq Ultra-Scale + MPSoC ZCU102上将MVint实现为系统原型,证实了与传统的检测方法相比,MVint可实现理想的12倍FPS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号