首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Art of Singular Vectors and Universal Adversarial Perturbations
【24h】

Art of Singular Vectors and Universal Adversarial Perturbations

机译:奇异向量和普遍对抗性摄动的艺术

获取原文

摘要

Vulnerability of Deep Neural Networks (DNNs) to adversarial attacks has been attracting a lot of attention in recent studies. It has been shown that for many state of the art DNNs performing image classification there exist universal adversarial perturbations - image-agnostic perturbations mere addition of which to natural images with high probability leads to their misclassification. In this work we propose a new algorithm for constructing such universal perturbations. Our approach is based on computing the so-called (p, q)-singular vectors of the Jacobian matrices of hidden layers of a network. Resulting perturbations present interesting visual patterns, and by using only 64 images we were able to construct universal perturbations with more than 60 % fooling rate on the dataset consisting of 50000 images. We also investigate a correlation between the maximal singular value of the Jacobian matrix and the fooling rate of the corresponding singular vector, and show that the constructed perturbations generalize across networks.
机译:在最近的研究中,深层神经网络(DNN)容易受到对抗性攻击。已经显示出,对于执行图像分类的许多现有技术的DNN,存在普遍的对抗性摄动-不可知论图像的摄动,仅将其与自然图像相加的可能性就很高,从而导致其误分类。在这项工作中,我们提出了一种构造这种普遍扰动的新算法。我们的方法基于计算网络隐藏层的雅可比矩阵的所谓(p,q)奇异矢量。产生的扰动呈现出有趣的视觉模式,并且仅使用64张图像,我们就可以在由50000张图像组成的数据集上以60%的愚弄率构造通用扰动。我们还研究了雅可比矩阵的最大奇异值和相应奇异向量的空虚率之间的相关性,并表明构造的扰动在网络中普遍存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号