首页> 外文期刊>Neurocomputing >Fast-UAP: An algorithm for expediting universal adversarial perturbation generation using the orientations of perturbation vectors
【24h】

Fast-UAP: An algorithm for expediting universal adversarial perturbation generation using the orientations of perturbation vectors

机译:FAST-UAP:使用扰动向量方向加速通用对抗扰动生成的算法

获取原文
获取原文并翻译 | 示例

摘要

Convolutional neural networks (CNNs), which are popular machine-learning tools, are being applied in various tasks. However, CNN models are vulnerable to universal perturbations, which despite being usu-ally quasi-imperceptible to the human eye can cause natural images to be misclassified with high probability. The original algorithm of generating universal perturbations (the algorithm is called UAP for brevity) only aggregates minimal perturbations in each iteration without considering the orientations of perturbation vectors; consequently, the magnitude of the universal perturbation cannot efficiently increase at each iteration, thereby resulting in slow universal perturbation generation. Hence, we propose an optimized algorithm to enhance the performance of generating universal perturbations based on the orientations of perturbation vectors. At each iteration, rather than choosing the minimal perturbation vector, we choose the perturbation whose orientation is similar to that of the current universal perturbation; therefore, the magnitude of the aggregation of both the perturbations will be maximized. The experimental results show that compared with UAP, we could generate universal perturbations in a shorter time using a smaller number of training images. Furthermore, we empirically observed that compared with the universal perturbations generated using UAP, the ones generated using our proposed algorithm achieved an average fooling-rate increment of 9% in white-box and black-box attacks. (c) 2020 Elsevier B.V. All rights reserved.
机译:作为流行的机器学习工具的卷积神经网络(CNNS)正在应用于各种任务。然而,CNN模型容易受到普及扰动的影响,尽管是对人眼的尿组难以察觉可能导致自然的图像以高概率被错误分类。生成通用扰动的原始算法(算法称为简洁性UAP)仅在每次迭代中聚集最小的扰动,而不考虑扰动向量的方向;因此,通用扰动的大小在每次迭代中无法有效地增加,从而导致慢速扰动产生。因此,我们提出了一种优化的算法,以提高基于扰动向量的方向产生通用扰动的性能。在每次迭代中,而不是选择最小的扰动向量,我们选择扰动,其取向与当前的通用扰动相似;因此,两个扰动的聚集的大小将最大化。实验结果表明,与UAP相比,我们可以使用较少数量的训练图像在较短的时间内产生通用扰动。此外,我们经验观察到,与使用UAP产生的通用扰动相比,使用我们所提出的算法产生的那些在白盒和黑匣子攻击中实现了9%的平均愚蠢增量。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号