首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Learning to Generate Time-Lapse Videos Using Multi-stage Dynamic Generative Adversarial Networks
【24h】

Learning to Generate Time-Lapse Videos Using Multi-stage Dynamic Generative Adversarial Networks

机译:学习使用多阶段动态生成对抗网络生成时移视频

获取原文

摘要

Taking a photo outside, can we predict the immediate future, e.g., how would the cloud move in the sky? We address this problem by presenting a generative adversarial network (GAN) based two-stage approach to generating realistic time-lapse videos of high resolution. Given the first frame, our model learns to generate long-term future frames. The first stage generates videos of realistic contents for each frame. The second stage refines the generated video from the first stage by enforcing it to be closer to real videos with regard to motion dynamics. To further encourage vivid motion in the final generated video, Gram matrix is employed to model the motion more precisely. We build a large scale time-lapse dataset, and test our approach on this new dataset. Using our model, we are able to generate realistic videos of up to 128 Ã- 128 resolution for 32 frames. Quantitative and qualitative experiment results demonstrate the superiority of our model over the state-of-the-art models.
机译:在室外拍摄照片时,我们能否预测不久的将来,例如,云如何在天空中移动?我们通过提出基于生成对抗网络(GAN)的两阶段方法来生成高分辨率的逼真的延时视频来解决此问题。给定第一个框架,我们的模型将学习生成长期的未来框架。第一阶段为每个帧生成逼真的内容的视频。第二阶段通过在运动动态方面将其逼近真实视频,从而优化了第一阶段生成的视频。为了进一步鼓励最终生成的视频中的生动运动,采用了Gram矩阵对运动进行更精确的建模。我们构建了一个大型延时数据集,并在这个新数据集上测试了我们的方法。使用我们的模型,我们能够为32帧生成高达128×128分辨率的逼真的视频。定量和定性的实验结果证明了我们的模型优于最新模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号