首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships
【24h】

Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships

机译:结构推断网:使用场景级上下文和实例级关系的对象检测

获取原文

摘要

Context is important for accurate visual recognition. In this work we propose an object detection algorithm that not only considers object visual appearance, but also makes use of two kinds of context including scene contextual information and object relationships within a single image. Therefore, object detection is regarded as both a cognition problem and a reasoning problem when leveraging these structured information. Specifically, this paper formulates object detection as a problem of graph structure inference, where given an image the objects are treated as nodes in a graph and relationships between the objects are modeled as edges in such graph. To this end, we present a so-called Structure Inference Network (SIN), a detector that incorporates into a typical detection framework (e.g. Faster R-CNN) with a graphical model which aims to infer object state. Comprehensive experiments on PASCAL VOC and MS COCO datasets indicate that scene context and object relationships truly improve the performance of object detection with more desirable and reasonable outputs.
机译:上下文对于准确的视觉识别很重要。在这项工作中,我们提出了一种对象检测算法,该算法不仅考虑对象的视觉外观,还利用两种上下文,包括场景上下文信息和单个图像内的对象关系。因此,在利用这些结构化信息时,对象检测既被视为认知问题,又被视为推理问题。具体而言,本文将对象检测公式化为图形结构推断问题,其中在给定图像的情况下,将对象视为图形中的节点,并将对象之间的关系建模为此类图形中的边缘。为此,我们提出了一种所谓的结构推断网络(SIN),它是一种结合到典型检测框架(例如Faster R-CNN)中的检测器,其图形模型旨在推断对象状态。在PASCAL VOC和MS COCO数据集上进行的综合实验表明,场景上下文和对象关系确实以更高的期望和合理的输出真正提高了对象检测的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号