首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Cascade R-CNN: Delving Into High Quality Object Detection
【24h】

Cascade R-CNN: Delving Into High Quality Object Detection

机译:级联R-CNN:深入研究高质量目标检测

获取原文

摘要

In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code is available at https://github.com/zhaoweicai/cascade-rcnn.
机译:在对象检测中,需要定义联合正负(IoU)阈值。以低IoU阈值训练的物体检测器,例如0.5,通常会产生噪声检测。但是,随着IoU阈值的增加,检测性能趋于下降。造成这种情况的主要原因有两个:1)在训练期间由于正样本呈指数消失而过度拟合,以及2)探测器最佳的IoU与输入假设的IoU之间的推理时间不匹配。为了解决这些问题,提出了一种多阶段目标检测架构Cascade R-CNN。它由一系列经过不断提高的IoU阈值训练的检测器组成,从而可以对接近的假阳性序列进行更具选择性的选择。对检测器的培训是逐步进行的,利用了这样的观察:检测器的输出是用于训练下一个更高质量检测器的良好分布。对逐步改进的假设的重新采样保证了所有检测器都有一组等效大小的正例,从而减少了过拟合问题。推理时采用相同的级联过程,从而使假设与每个阶段的检测器质量之间更紧密地匹配。显示了Cascade R-CNN的简单实现,可以超越具有挑战性的COCO数据集上的所有单模型对象检测器。实验还表明,Cascade R-CNN可广泛应用于各种探测器架构,从而获得稳定的增益,而与基线探测器强度无关。该代码可从https://github.com/zhaoweicai/cascade-rcnn获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号