首页> 外文OA文献 >Cascade R-CNN: Delving Into High Quality Object Detection
【2h】

Cascade R-CNN: Delving Into High Quality Object Detection

机译:Cascade R-CNN:深入研究高质量的物体检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In object detection, an intersection over union (IoU) threshold is requiredto define positives and negatives. An object detector, trained with low IoUthreshold, e.g. 0.5, usually produces noisy detections. However, detectionperformance tends to degrade with increasing the IoU thresholds. Two mainfactors are responsible for this: 1) overfitting during training, due toexponentially vanishing positive samples, and 2) inference-time mismatchbetween the IoUs for which the detector is optimal and those of the inputhypotheses. A multi-stage object detection architecture, the Cascade R-CNN, isproposed to address these problems. It consists of a sequence of detectorstrained with increasing IoU thresholds, to be sequentially more selectiveagainst close false positives. The detectors are trained stage by stage,leveraging the observation that the output of a detector is a good distributionfor training the next higher quality detector. The resampling of progressivelyimproved hypotheses guarantees that all detectors have a positive set ofexamples of equivalent size, reducing the overfitting problem. The same cascadeprocedure is applied at inference, enabling a closer match between thehypotheses and the detector quality of each stage. A simple implementation ofthe Cascade R-CNN is shown to surpass all single-model object detectors on thechallenging COCO dataset. Experiments also show that the Cascade R-CNN iswidely applicable across detector architectures, achieving consistent gainsindependently of the baseline detector strength. The code will be madeavailable at https://github.com/zhaoweicai/cascade-rcnn.
机译:在对象检测中,结合(iou)阈值的交叉点是确定阳性和否定的。一种物体探测器,具有低成熟的培训,例如, 0.5,通常会产生嘈杂的检测。然而,检测倾向于增加IOU阈值趋于降低。两种主要物质负责这是:1)在训练期间过度装箱,由于阳性样本的训练,2)探测器是最佳的IOS的推理 - 时间不匹配,探测器是最佳的。多级对象检测架构,级联R-CNN,缺乏解决这些问题。它由一系列具有越来越多的IOU阈值的检测器序列组成,依次选择更好地选择闭合误报。探测器逐步训练,利用检测器的输出是训练下一个更高质量检测器的良好分发的观察。逐步预期的假设的重新采样保证所有探测器都有相当大小的正面涂层,减少了过度拟合问题。在推理中施加相同的级联实验,在每个阶段之间的近似的探测器质量与每个阶段之间的较近匹配。级联R-CNN的简单实现显示,在TheChenging Coco DataSet上超越所有单模对象探测器。实验还表明,级联R-CNN遍布探测器架构,实现了基线检测器强度一致的吞吐量。该代码将在https://github.com/zhaoweicai/cascade-rcnn上进行MADEAVAILABLE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号