首页> 外文会议>IEEE/ACM international symposium on cluster, cloud and grid computing >Scalable PGAS Metadata Management on Extreme Scale Systems
【24h】

Scalable PGAS Metadata Management on Extreme Scale Systems

机译:极端规模系统上的可扩展PGAS元数据管理

获取原文

摘要

Programming models intended to run on exascale systems have a number of challenges to overcome, specially the sheer size of the system as measured by the number of concurrent software entities created and managed by the underlying runtime. It is clear from the size of these systems that any state maintained by the programming model has to be strictly sub-linear in size, in order not to overwhelm memory usage with pure overhead. A principal feature of Partitioned Global Address Space (PGAS) models is providing easy access to global-view distributed data structures. In order to provide efficient access to these distributed data structures, PGAS models must keep track of metadata such as where array sections are located with respect to processes/threads running on the HPC system. As PGAS models and applications become ubiquitous on very large trans-pet scale systems, a key component to their performance and scalability will be efficient and judicious use of memory for model overhead (metadata) compared to application data. We present an evaluation of several strategies to manage PGAS metadata that exhibit different space/time tradeoffs. We use two real-world PGAS applications to capture metadata usage patterns and gain insight into their communication behavior.
机译:旨在在亿亿级系统上运行的编程模型有许多挑战需要克服,特别是系统的庞大规模(由基础运行时创建和管理的并发软件实体的数量来衡量)。从这些系统的大小可以明显看出,编程模型所维护的任何状态都必须严格地处于次线性状态,以便不以纯粹的开销压倒内存使用量。分区全局地址空间(PGAS)模型的主要功能是提供对全局视图分布式数据结构的轻松访问。为了提供对这些分布式数据结构的有效访问,PGAS模型必须跟踪元数据,例如相对于HPC系统上运行的进程/线程,数组节的位置。随着PGAS模型和应用程序在超大型规模的系统上变得无处不在,与应用程序数据相比,它们的性能和可伸缩性的关键组成部分将是有效而明智地使用内存进行模型开销(元数据)。我们对几种管理PGAS元数据的策略进行了评估,这些策略表现出不同的时空权衡。我们使用两个实际的PGAS应用程序来捕获元数据使用模式并深入了解其通信行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号