首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Efficient and Scalable Metadata Management in EB-Scale File Systems
【24h】

Efficient and Scalable Metadata Management in EB-Scale File Systems

机译:EB级文件系统中的高效且可扩展的元数据管理

获取原文
获取原文并翻译 | 示例

摘要

Efficient and scalable distributed metadata management is critically important to overall system performance in large-scale distributed file systems, especially in the EB-scale era. Hash-based mapping and subtree partitioning are state-of-the-art distributed metadata management schemes. Hash-based mapping evenly distributes workload among metadata servers, but it eliminates all hierarchical locality of metadata. Subtree partitioning does not uniformly distribute workload among metadata servers, and metadata needs to be migrated to keep the load balanced roughly. Distributed metadata management is relatively difficult since it has to guarantee metadata consistency. Meanwhile, scaling metadata performance is more complicated than scaling raw I/O performance. The complexity further rises with distributed metadata. It results in a primary goal that is to improve metadata management scalability while paying attention to metadata consistency. In this paper, we present a ring-based metadata management mechanism named Dynamic Ring Online Partitioning (DROP). It can preserve metadata locality using locality-preserving hashing, keep metadata consistency, as well as dynamically distribute metadata among metadata server cluster to keep load balancing. By conducting performance evaluation through extensive trace-driven simulations and a prototype implementation, experimental results demonstrate the efficiency and scalability of DROP.
机译:高效且可扩展的分布式元数据管理对于大规模分布式文件系统中的整体系统性能至关重要,尤其是在EB规模时代。基于哈希的映射和子树分区是最新的分布式元数据管理方案。基于散列的映射在元数据服务器之间平均分配工作负载,但是它消除了元数据的所有层次结构。子树分区不能在元数据服务器之间均匀地分配工作负载,并且需要迁移元数据以大致平衡负载。分布式元数据管理相对困难,因为它必须保证元数据的一致性。同时,扩展元数据性能比扩展原始I / O性能更为复杂。分布式元数据的复杂性进一步增加。它的主要目标是提高元数据管理的可伸缩性,同时注意元数据的一致性。在本文中,我们提出了一种基于环的元数据管理机制,称为动态环在线分区(DROP)。它可以使用保留位置的哈希值保留元数据的位置,保持元数据的一致性,以及在元数据服务器群集之间动态分配元数据以保持负载平衡。通过广泛的跟踪驱动模拟和原型实现进行性能评估,实验结果证明了DROP的效率和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号