首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Supporting Scalable and Adaptive Metadata Management in Ultralarge-Scale File Systems
【24h】

Supporting Scalable and Adaptive Metadata Management in Ultralarge-Scale File Systems

机译:在超大规模文件系统中支持可伸缩和自适应元数据管理

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultralarge-scale file systems (more than Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDSs) into a multilayered query hierarchy and exploits grouped Bloom filters to efficiently route metadata requests to desired MDSs through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. An effective workload balance method is also developed in this paper for server reconfigurations. This scheme is evaluated through extensive trace-driven simulations and a prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultralarge-scale storage systems.
机译:本文提出了一种针对超大型文件系统(超过PB甚至是Exabytes)的可扩展且自适应的分散式元数据查找方案。我们的方案在逻辑上将元数据服务器(MDS)组织到多层查询层次结构中,并利用分组的Bloom筛选器通过层次结构将元数据请求有效地路由到所需的MDS。可以以网络或内存速度执行此元数据查找方案,而不受慢磁盘性能的限制。本文还为服务器重新配置开发了一种有效的工作负载平衡方法。通过广泛的跟踪驱动模拟和Linux中的原型实现,可以评估此​​方案。实验结果表明,该方案可以显着提高超大规模存储系统中元数据管理的可扩展性和查询效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号