首页> 外文会议>IEEE/ACM International Conference on Utility and Cloud Computing Companion >Scalable Detection of Rural Schools in Africa Using Convolutional Neural Networks and Satellite Imagery
【24h】

Scalable Detection of Rural Schools in Africa Using Convolutional Neural Networks and Satellite Imagery

机译:使用卷积神经网络和卫星图像对非洲乡村学校进行可扩展检测

获取原文

摘要

Many countries typically lack sufficient civic data to assess where and what challenges communities face. High resolution satellite images can provide honest assessments of neighborhoods and communities to guide aid workers, policy makers, private sector, and philanthropists. Although humans are very good at detecting patterns, manually inspecting high resolution satellite imagery at scale can be costly and time consuming. Machine learning has the potential to scale this process significantly and automate the detection of regions of interest. Here we tackle the problem of identifying schools in northeastern rural Liberia as a case study for evaluating the value of high resolution satellite imagery and machine learning. In our case study we utilize unsupervised learning with pre-trained convolutional neural networks. Our results suggest that using machine learning with high resolution satellite images can reduce the search space, help find schools with high recall and aid appropriate and relevant resource allocations.
机译:许多国家通常缺乏足够的公民数据来评估社区面临的挑战以及挑战。高分辨率卫星图像可以提供对社区和社区的诚实评估,以指导援助人员,政策制定者,私营部门和慈善家。尽管人类非常擅长检测模式,但是大规模手动检查高分辨率卫星图像可能既昂贵又耗时。机器学习具有显着扩展此过程并自动检测感兴趣区域的潜力。在这里,我们将解决在利比里亚东北部农村地区确定学校的问题,以此作为评估高分辨率卫星图像和机器学习价值的案例研究。在我们的案例研究中,我们通过预训练卷积神经网络利用无监督学习。我们的结果表明,将机器学习与高分辨率卫星图像一起使用可以减少搜索空间,帮助找到具有较高召回率的学校,并帮助进行适当和相关的资源分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号