首页> 外文会议>IEEE-RIVF International Conference on Computing and Communication Technologies >Automated Change Detection and Reactive Clustering in Multivariate Streaming Data
【24h】

Automated Change Detection and Reactive Clustering in Multivariate Streaming Data

机译:多元流数据中的自动变化检测和反应性聚类

获取原文

摘要

Many automated systems need the capability of automatic change detection without the given detection threshold. This paper presents an automated change detection algorithm in streaming multivariate data. Two overlapping windows are used to quantify the changes. While a window is used as the reference window from which the clustering is created, the other called the current window captures the newly incoming data points. A newly incoming data point can be considered a change point if it is not a member of any cluster. As our clustering-based change detector does not require detection threshold, it is an automated detector. Based on this change detector, we propose a reactive clustering algorithm for streaming data. Our empirical results show that our clustering-based change detector works well with multivariate streaming data. The detection accuracy depends on the number of clusters in the reference window, and on the window width.
机译:许多自动化系统需要没有给定检测阈值的自动变化检测功能。本文提出了一种在流式多变量数据中的自动变化检测算法。两个重叠的窗口用于量化变化。虽然将一个窗口用作创建聚类的参考窗口,但另一个窗口称为当前窗口,它捕获新进入的数据点。如果新传入的数据点不是任何群集的成员,则可以将其视为更改点。由于我们基于聚类的变化检测器不需要检测阈值,因此它是自动检测器。基于这种变化检测器,我们提出了一种用于数据流的反应式聚类算法。我们的经验结果表明,基于聚类的变化检测器可以很好地处理多元流数据。检测精度取决于参考窗口中簇的数量以及窗口宽度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号