首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Change Detection in Streaming Multivariate Data Using Likelihood Detectors
【24h】

Change Detection in Streaming Multivariate Data Using Likelihood Detectors

机译:使用似然检测器的流式多变量数据中的变化检测

获取原文
获取原文并翻译 | 示例

摘要

Change detection in streaming data relies on a fast estimation of the probability that the data in two consecutive windows come from different distributions. Choosing the criterion is one of the multitude of questions that need to be addressed when designing a change detection procedure. This paper gives a log-likelihood justification for two well-known criteria for detecting change in streaming multidimensional data: Kullback-Leibler (K-L) distance and Hotelling's T-square test for equal means (H). We propose a semiparametric log-likelihood criterion (SPLL) for change detection. Compared to the existing log-likelihood change detectors, SPLL trades some theoretical rigor for computation simplicity. We examine SPLL together with K-L and H on detecting induced change on 30 real data sets. The criteria were compared using the area under the respective Receiver Operating Characteristic (ROC) curve (AUC). SPLL was found to be on the par with H and better than K-L for the nonnormalized data, and better than both on the normalized data.
机译:流数据中的更改检测依赖于对两个连续窗口中数据来自不同分布的概率的快速估计。选择标准是设计变更检测程序时需要解决的众多问题之一。本文为检测流多维数据中的变化的两个众所周知的标准提供了对数似然证明:Kullback-Leibler(K-L)距离和均等(H)的Hotelling T平方检验。我们提出了一种用于变化检测的半参数对数似然准则(SPLL)。与现有的对数似然变化检测器相比,SPLL为简化计算而牺牲了一些理论上的严格性。我们将SPLL与K-L和H一起检查,以检测30个真实数据集上的诱发变化。使用相应的接收器工作特征(ROC)曲线(AUC)下的面积比较标准。对于非归一化数据,发现SPLL与H相当,并且优于K-L,在归一化数据上,SPLL也优于K-L。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号