首页> 外文会议>IEEE International Systems Engineering Symposium >Discovering Hackers by Stealth: Predicting Fingerprinting Attacks on Honeypot Systems
【24h】

Discovering Hackers by Stealth: Predicting Fingerprinting Attacks on Honeypot Systems

机译:通过潜行发现黑客:预测蜜罐系统上的指纹攻击

获取原文

摘要

Cybersecurity is becoming increasingly challenging due to escalating security attacks on networks. A honeypot system is an effective entrapment mechanism for collecting information about these attacks and attackers. Nonetheless, one of the biggest risks to the honeypot system is the possibility of being fingerprinted by an attacker. As a consequence of the fingerprinting, the identity of the honeypot system could be revealed or it could be transformed into a bot to attack others. Several efficacious methods are proposed to fingerprint the honeypot system or to prevent it. However, there is no method available that can identify and predict fingerprinting in real-time, to save the honeypot system. Therefore, this paper proposes a technique to identify and predict fingerprinting attacks on the honeypot system in real-time. This technique is based on the fingerprinting process which necessitates a series of events by the attacker and by analysing these events contemporaneously, it is feasible to identify and predict the fingerprinting attack on the honeypot system. For the development of this technique, a popular honeypot tool KFSensor and fingerprinting tools Nmap and Xprobe2 are utilised to collect fingerprint data relating to the honeypot system. This data is analysed to detect the various attack techniques used by popular fingerprinting tools to propose a solution.
机译:由于网络上不断升级的安全攻击,网络安全正变得越来越具有挑战性。蜜罐系统是一种有效的诱捕机制,用于收集有关这些攻击和攻击者的信息。尽管如此,蜜罐系统的最大风险之一是可能被攻击者指纹识别。作为指纹识别的结果,蜜罐系统的身份可能会被泄露,也可能会变成机器人来攻击其他人。提出了几种有效的方法来对蜜罐系统进行指纹识别或预防。但是,没有可用的方法可以实时识别和预测指纹,从而节省蜜罐系统。因此,本文提出了一种实时识别和预测蜜罐系统指纹攻击的技术。该技术基于指纹过程,该过程需要攻击者进行一系列事件,并且通过同时分析这些事件,在蜜罐系统上识别和预测指纹攻击是可行的。为了开发该技术,利用了流行的蜜罐工具KFSensor和指纹识别工具Nmap和Xprobe2来收集与蜜罐系统有关的指纹数据。分析此数据以检测流行的指纹工具提出的解决方案所使用的各种攻击技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号