首页> 外文会议>IEEE International Symposium on Computer-Based Medical Systems >A Comparative Study of Cell Nuclei Attributed Relational Graphs for Knowledge Description and Categorization in Histopathological Gastric Cancer Whole Slide Images
【24h】

A Comparative Study of Cell Nuclei Attributed Relational Graphs for Knowledge Description and Categorization in Histopathological Gastric Cancer Whole Slide Images

机译:组织病理学胃癌全玻片图像中知识描述和分类的细胞核属性关系图的比较研究

获取原文

摘要

In this paper, cell nuclei attributed relational graphs are extensively studied and comparatively analyzed for effective knowledge description and classification in H&E stained whole slide images of gastric cancer. This includes design and implementation of multiple graph variations with diverse tissue component characteristics and architectural properties to obtain enhanced image representations, followed by hierarchical ensemble learning and classification. A detailed comparative analysis of the proposed graph-based methods, also with the established low-level, object-level and high-level image descriptions is performed, that further leads to a hybrid approach combining salient visual information. Quantitative evaluation of investigated methods suggests the suitability of particular graph variants for automatic classification using H&E stained histopathological gastric cancer whole slide images based on HER2 immunohistochemistry.
机译:在本文中,对细胞核属性关系图进行了广泛研究和比较,以对H&E染色的胃癌全玻片图像进行有效的知识描述和分类。这包括设计和实现具有不同组织成分特征和建筑特性的多个图形变体,以获得增强的图像表示,然后进行层次集成学习和分类。对所提出的基于图的方法进行了详细的比较分析,同时还建立了低级,对象级和高级图像描述,这进一步导致了一种结合了显着视觉信息的混合方法。对研究方法的定量评估表明,基于HER2免疫组织化学,使用H&E染色的组织病理学胃癌整张幻灯片图像,可以对特定图形变体进行自动分类的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号