首页> 外文会议>IEEE International Parallel Distributed Processing Symposium >Cyclops Tensor Framework: Reducing Communication and Eliminating Load Imbalance in Massively Parallel Contractions
【24h】

Cyclops Tensor Framework: Reducing Communication and Eliminating Load Imbalance in Massively Parallel Contractions

机译:独眼巨人张量框架:减少通讯并消除大规模平行收缩中的负载不平衡

获取原文

摘要

Cyclops (cyclic-operations) Tensor Framework(CTF) is a distributed library for tensor contractions. CTF aims to scale high-dimensional tensor contractions such as those required in the Coupled Cluster (CC) electronic structure method to massively-parallel supercomputers. The framework preserves tensor structure by subdividing tensors cyclically, producing a regular parallel decomposition. An internal virtualization layer provides completely general mapping support while maintaining ideal load balance. The mapping framework decides on the best mapping for each tensor contraction at run-time via explicit calculations of memory usage and communication volume. CTF employs a general redistribution kernel, which transposes tensors of any dimension between arbitrary distributed layouts, yet touches each piece of data only once. Sequential symmetric contractions are reduced to matrix multiplication calls via tensor index transpositions and partial unpacking. The user-level interface elegantly expresses arbitrary-dimensional generalized tensor contractions in the form of a domain specific language. We demonstrate performance of CC with single and double excitations on 8192 nodes of Blue Gene/Q and show that CTF outperforms NWChem on Cray XE6 supercomputers for benchmarked systems.
机译:独眼巨人(循环操作)Tensor Framework(CTF)是一个用于张量收缩的分布式库。 CTF的目标是将高维张量收缩(例如,耦合簇(CC)电子结构方法中所需的那些)缩放到大规模并行超级计算机。该框架通过循环细分张量来保持张量结构,从而产生规则的并行分解。内部虚拟化层提供完全通用的映射支持,同时保持理想的负载平衡。映射框架通过显式计算内存使用情况和通信量,为运行时的每个张量收缩决定最佳映射。 CTF使用通用的重新分配内核,该内核可以在任意分布式布局之间转置任何维度的张量,而仅接触每个数据一次。顺序对称收缩通过张量索引转置和部分解压缩而简化为矩阵乘法调用。用户级界面以领域特定语言的形式优雅地表示任意维的广义张量收缩。我们在Blue Gene / Q的8192个节点上演示了单激励和双激励的CC性能,并表明CTF在基准系统的Cray XE6超级计算机上的性能优于NWChem。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号