首页> 外文会议>IEEE International Conference on Robotics & Automation >Vision-based robust road lane detection in urban environments
【24h】

Vision-based robust road lane detection in urban environments

机译:在城市环境中基于视觉的鲁棒道路检测

获取原文

摘要

Road and lane detection play an important role in autonomous driving and commercial driver-assistance systems. Vision-based road detection is an essential step towards autonomous driving, yet a challenging task due to illumination and complexity of the visual scenery. Urban scenes may present additional challenges such as intersections, multi-lane scenarios, or clutter due to heavy traffic. This paper presents an integrative approach to ego-lane detection that aims to be as simple as possible to enable real-time computation while being able to adapt to a variety of urban and rural traffic scenarios. The approach at hand combines and extends a road segmentation method in an illumination-invariant color image, lane markings detection using a ridge operator, and road geometry estimation using RANdom SAmple Consensus (RANSAC). Employing the segmented road region as a prior for lane markings extraction significantly improves the execution time and success rate of the RANSAC algorithm, and makes the detection of weakly pronounced ridge structures computationally tractable, thus enabling ego-lane detection even in the absence of lane markings. Segmentation performance is shown to increase when moving from a color-based to a histogram correlation-based model. The power and robustness of this algorithm has been demonstrated in a car simulation system as well as in the challenging KITTI data base of real-world urban traffic scenarios.
机译:道路和车道检测在自动驾驶和商业驾驶员辅助系统中起着重要作用。基于视觉的道路检测是实现自动驾驶的重要步骤,但由于照明和视觉场景的复杂性,因此仍然是一项艰巨的任务。城市场景可能会带来其他挑战,例如交叉路口,多车道场景或由于交通拥堵而造成的混乱。本文提出了一种自我通道检测的综合方法,其目标是尽可能简单以实现实时计算,同时能够适应各种城乡交通场景。现有的方法结合并扩展了不变光照彩色图像中的道路分割方法,使用山脊算子进行车道标记检测以及使用RANdom SAmple Consensus(RANSAC)进行道路几何估计。将分段的道路区域用作车道标记提取的先验,可以显着提高RANSAC算法的执行时间和成功率,并使得计算上较弱的凸脊结构的检测在计算上易于处理,从而即使在没有车道标记的情况下也可以进行自我车道检测。当从基于颜色的模型转换为基于直方图相关性的模型时,细分性能会提高。该算法的强大功能和强大功能已在汽车仿真系统以及现实世界中城市交通场景中具有挑战性的KITTI数据库中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号