首页> 外文会议>IEEE International Conference on Robotics & Automation >Dense 3D semantic mapping of indoor scenes from RGB-D images
【24h】

Dense 3D semantic mapping of indoor scenes from RGB-D images

机译:RGB-D图像对室内场景的密集3D语义映射

获取原文

摘要

Dense semantic segmentation of 3D point clouds is a challenging task. Many approaches deal with 2D semantic segmentation and can obtain impressive results. With the availability of cheap RGB-D sensors the field of indoor semantic segmentation has seen a lot of progress. Still it remains unclear how to deal with 3D semantic segmentation in the best way. We propose a novel 2D-3D label transfer based on Bayesian updates and dense pairwise 3D Conditional Random Fields. This approach allows us to use 2D semantic segmentations to create a consistent 3D semantic reconstruction of indoor scenes. To this end, we also propose a fast 2D semantic segmentation approach based on Randomized Decision Forests. Furthermore, we show that it is not needed to obtain a semantic segmentation for every frame in a sequence in order to create accurate semantic 3D reconstructions. We evaluate our approach on both NYU Depth datasets and show that we can obtain a significant speed-up compared to other methods.
机译:3D点云的密集语义分割是一项艰巨的任务。许多方法处理2D语义分割,并可以获得令人印象深刻的结果。随着廉价RGB-D传感器的出现,室内语义分割领域取得了很大进展。仍然不清楚如何以最佳方式处理3D语义分割。我们提出了一种基于贝叶斯更新和密集成对3D条件随机场的新颖2D-3D标签传输方法。这种方法允许我们使用2D语义分割来创建室内场景的一致3D语义重建。为此,我们还提出了一种基于随机决策森林的快速2D语义分割方法。此外,我们表明,无需创建序列中每个帧的语义分割即可创建准确的语义3D重建。我们在两个NYU深度数据集上评估了我们的方法,并表明与其他方法相比,我们可以显着提高速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号