首页> 外文会议>IEEE International Conference on Robotics & Automation >Learning spatial-semantic representations from natural language descriptions and scene classifications
【24h】

Learning spatial-semantic representations from natural language descriptions and scene classifications

机译:从自然语言描述和场景分类中学习空间语义表示

获取原文

摘要

We describe a semantic mapping algorithm that learns human-centric environment models by interpreting natural language utterances. Underlying the approach is a coupled metric, topological, and semantic representation of the environment that enables the method to fuse information from natural language descriptions with low-level metric and appearance data. We extend earlier work with a novel formulation that incorporates spatial layout into a topological representation of the environment. We also describe a factor graph formulation of the semantic properties that encodes human-centric concepts such as type and colloquial name for each mapped region. The algorithm infers these properties by combining the user's natural language descriptions with image- and laser-based scene classification. We also propose a mechanism to more effectively ground natural language descriptions of distant regions using semantic cues from other modalities. We describe how the algorithm employs this learned semantic information to propose valid topological hypotheses, leading to more accurate topological and metric maps. We demonstrate that integrating language with other sensor data increases the accuracy of the achieved spatial-semantic representation of the environment.
机译:我们描述了一种语义映射算法,该算法通过解释自然语言发音来学习以人为中心的环境模型。该方法的基础是环境的度量,拓扑和语义的耦合表示,使该方法能够将自然语言描述中的信息与低级度量和外观数据融合在一起。我们以一种新颖的方式扩展了早期的工作,该方式将空间布局纳入环境的拓扑表示中。我们还描述了语义属性的因子图公式化,它编码了以人为中心的概念,例如每个映射区域的类型和口语名称。该算法通过将用户的自然语言描述与基于图像和激光的场景分类相结合来推断这些属性。我们还提出了一种机制,可以使用其他形式的语义线索更有效地对遥远地区的自然语言进行描述。我们描述了该算法如何利用所学的语义信息来提出有效的拓扑假设,从而得出更准确的拓扑和度量图。我们证明,将语言与其他传感器数据集成在一起可以提高环境的空间语义表示的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号