首页> 外文会议>IEEE International Conference on Robotics & Automation >Linear MonoSLAM: A linear approach to large-scale monocular SLAM problems
【24h】

Linear MonoSLAM: A linear approach to large-scale monocular SLAM problems

机译:线性MonoSLAM:解决大规模单眼SLAM问题的线性方法

获取原文

摘要

This paper presents a linear approach for solving monocular simultaneous localization and mapping (SLAM) problems. The algorithm first builds a sequence of small initial submaps and then joins these submaps together in a divide-and-conquer (D&C) manner. Each of the initial submap is built using three monocular images by bundle adjustment (BA), which is a simple nonlinear optimization problem. Each step in the D&C submap joining is solved by a linear least squares together with a coordinate and scale transformation. Since the only nonlinear part is in the building of the initial submaps, the algorithm makes it possible to solve large-scale monocular SLAM while avoiding issues associated with initialization, iteration, and local minima that are present in most of the nonlinear optimization based algorithms currently used for large-scale monocular SLAM. Experimental results based on publically available datasets are used to demonstrate that the proposed algorithms yields solutions that are very close to those obtained using global BA starting from good initial guess.
机译:本文提出了一种线性方法来解决单眼同时定位和制图(SLAM)问题。该算法首先构建一系列小的初始子图,然后以分而治之(D&C)的方式将这些子图连接在一起。每个初始子图都是通过捆绑调整(BA)使用三个单眼图像构建的,这是一个简单的非线性优化问题。 D&C子图连接中的每个步骤都通过线性最小二乘法以及坐标和比例转换来解决。由于唯一的非线性部分是构建初始子图,因此该算法可以解决大规模单目SLAM,同时避免了目前大多数基于非线性优化的算法中存在的与初始化,迭代和局部最小值相关的问题用于大型单眼SLAM。基于公开可用数据集的实验结果用于证明所提出的算法所产生的解决方案与从良好的初始猜测开始使用全局BA获得的解决方案非常接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号