首页> 外文会议>IEEE International Conference on Robotics & Automation >Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization
【24h】

Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization

机译:通过期望最大化从未知初始相对姿态进行多机器人姿态图定位和数据关联

获取原文

摘要

This paper presents a novel approach for multirobot pose graph localization and data association without requiring prior knowledge about the initial relative poses of the robots. Without a common reference frame, the robots can only share observations of interesting parts of the environment, and trying to match between observations from different robots will result in many outlier correspondences. Our approach is based on the following key observation: while each multi-robot correspondence can be used in conjunction with the local robot estimated trajectories, to calculate the transformation between the robot reference frames, only the inlier correspondences will be similar to each other. Using this concept, we develop an expectation-maximization (EM) approach to efficiently infer the robot initial relative poses and solve the multi-robot data association problem. Once this transformation between the robot reference frames is estimated with sufficient measure of confidence, we show that a similar EM formulation can be used to solve also the full multi-robot pose graph problem with unknown multi-robot data association. We evaluate the performance of the developed approach both in a statistical synthetic-environment study and in a real-data experiment, demonstrating its robustness to high percentage of outliers.
机译:本文提出了一种用于多机器人姿态图定位和数据关联的新颖方法,而无需事先了解机器人的初始相对姿态。如果没有公共参考系,则机器人只能共享对环境有趣部分的观察,而尝试在来自不同机器人的观察之间进行匹配将导致许多异常的对应关系。我们的方法基于以下关键观察:尽管每个多机器人对应关系都可以与本地机器人估算轨迹结合使用,以计算机器人参考系之间的转换,但只有内部对应关系会彼此相似。使用此概念,我们开发了期望最大化(EM)方法来有效地推断机器人的初始相对姿态并解决多机器人数据关联问题。一旦用足够的置信度估计了机器人参考系之间的这种转换,我们就表明可以使用相似的EM公式来解决具有未知多机器人数据关联的完整多机器人姿态图问题。我们在统计综合环境研究和实际数据实验中都评估了该开发方法的性能,从而证明了该方法在异常值较高的情况下的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号