首页> 外文会议>IEEE International Conference on Real-time Computing and Robotics >A Real-Time Abnormal Data Detecting Strategy for Length Sensors Measurement
【24h】

A Real-Time Abnormal Data Detecting Strategy for Length Sensors Measurement

机译:长度传感器测量的实时异常数据检测策略

获取原文

摘要

In this paper, a real-time detecting strategy for outliers and abnormal fluctuation during the data acquisition in length sensors measurement is investigated. The appearance of outliers and abnormal fluctuation could lower the accuracy of the measurement system using the accurate noncontact sensors. A mathematic model consists of the real value, the noise as well as the outliers is built to represent the final observation result of the length sensors used for measuring the machining quantity. Then, different kinds of the characteristics of numerical data are analysed for the real-time effectiveness for outliers detecting and abnormal fluctuation assessment. Based on the real-time characteristic of the acquired data, a detecting strategy is designed to eliminate the outlier and judge the fluctuating extent of the data. The simulation results illustrate the applicability and the effectiveness of the proposed approach.
机译:本文研究了长度传感器测量中数据采集过程中异常值和异常波动的实时检测策略。异常值的出现和异常波动可能会降低使用精确的非接触式传感器的测量系统的精度。建立一个包含实际值,噪声以及异常值的数学模型,以表示用于测量加工量的长度传感器的最终观测结果。然后,分析各种类型的数值数据特征,以实现异常值检测和异常波动评估的实时有效性。根据采集到的数据的实时性,设计了一种检测策略,以消除异常值并判断数据的波动程度。仿真结果说明了该方法的适用性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号