首页> 外文会议>IEEE International Conference on Intelligence and Safety for Robotics >The Research of Single-Sample Face Recognition Based on Wavelet Image Fusion
【24h】

The Research of Single-Sample Face Recognition Based on Wavelet Image Fusion

机译:基于小波图像融合的单样本人脸识别研究

获取原文

摘要

As an important part of robot and human-computer interaction, face recognition technology can improve the service and security of robot. In recent years, face recognition technology has improved a lot. Now researchers mainly pay attention to study multi-pose and multi-sample face recognition, but it's difficult to get the method of obtaining these images. However, it is easy to get single face image of per person. So, it is very significant to study the face recognition with single training sample. This paper introduces the single-sample face recognition research based on wavelet image fusion. Firstly, it uses the methods of wavelet transformation and image fusion to obtain the low frequency information of registered image and deposit it to library. Then fusing the low frequency information in library and the high frequency information in tested images. By computing the Euclidean distances between these two images and take it as the input feature to the nerve network to classify. Also, it will use BP neural network to make up the classifier of face recognition and improve it based on traditional neural network. Single face image will be designed matched to every face, activation functions and nodes of nerve cells of the input layer, hidden layer and output layer are designed actively. Lastly through the experiments on the face detection of FERET base, the result is found that the classifier designed in this article is useful for the detection and recognition of human faces with perspective angles, ornaments and in different sizes.
机译:人脸识别技术作为机器人与人机交互的重要组成部分,可以提高机器人的服务和安全性。近年来,人脸识别技术有了很大的进步。现在,研究人员主要关注研究多姿态和多样本的人脸识别,但是很难获得获取这些图像的方法。但是,很容易获得每个人的单张脸图像。因此,以单一训练样本研究人脸识别具有非常重要的意义。本文介绍了基于小波图像融合的单样本人脸识别研究。首先,它利用小波变换和图像融合的方法获得配准图像的低频信息,并将其存储到库中。然后将库中的低频信息与测试图像中的高频信息融合在一起。通过计算这两幅图像之间的欧几里得距离,并将其作为神经网络的输入特征进行分类。此外,它将使用BP神经网络来构成人脸识别的分类器,并在传统神经网络的基础上对其进行改进。将设计与每张脸相匹配的单脸图像,并积极设计输入层,隐藏层和输出层的神经细胞的激活功能和节点。最后通过对FERET基础人脸检测的实验,发现本文设计的分类器可用于检测和识别具有视角,装饰物和不同大小的人脸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号