【24h】

Analyzing Alzheimer's disease gene expression dataset using clustering and association rule mining

机译:使用聚类和关联规则挖掘分析阿尔茨海默氏病基因表达数据集

获取原文

摘要

Biological data like Gene expression datasets are already complex and are hard to process manually. The larger such types of datasets become, harder it becomes to manually process such datasets and makes more sense to use data mining techniques can be applied to discover or identify interesting patterns in the data. This paper presents various data mining techniques for analyzing Alzheimer's disease Gene Expression Dataset using Clustering and Association Rule Mining. The DNA-microarrays method allows acquiring a lot of data on gene expression. Due to the environmental and experimental factor, the variability of the gene expression is wide and unpredictable. This huge amount of data must be processed in order to retrieve relevant medical information. To do so, numerous methods of clustering are performed. There are two main goals: classify the gene expression and provide tools to retrieve the information. These techniques include basic data mining, two types of clustering and it discusses the use of association rules mining for such data. Emphasis is made on the particular dataset used in this research: the neurofibrillary tangles dataset that contains gene expression data for normal neurons and 'sick' neurons for ten different patients suffering from a mid-stage Alzheimer's disease.
机译:像基因表达数据集这样的生物数据已经很复杂,很难手动处理。这样的数据集类型越大,手动处理此类数据集就越难,使用数据挖掘技术可以发现或识别数据中有趣的模式变得更加有意义。本文介绍了使用聚类和关联规则挖掘来分析阿尔茨海默氏病基因表达数据集的各种数据挖掘技术。 DNA微阵列方法可获取有关基因表达的大量数据。由于环境和实验因素,基因表达的变异性很大且无法预测。为了检索相关的医疗信息,必须处理大量数据。为此,执行了许多聚类方法。有两个主要目标:对基因表达进行分类并提供检索信息的工具。这些技术包括基本数据挖掘,两种类型的聚类,并且讨论了对此类数据使用关联规则挖掘。重点放在此研究中使用的特定数据集上:神经原纤维缠结数据集包含正常神经元的基因表达数据和十个患有中期阿尔茨海默氏病的患者的“病态”神经元的基因表达数据。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号